Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 64-74, 2024.
Article in Chinese | WPRIM | ID: wpr-1003767

ABSTRACT

ObjectiveTo investigate the effects and mechanism of Zuogui Jiangtang Tongmai prescription (ZJTP) on human umbilical vein endothelial cells (HUVECs) damaged by high glucose combined with lipopolysaccharide (LPS). MethodThe survival rate of cells was determined by cell counting kit-8 (CCK-8), and the level of tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay (ELISA) to determine the optimal injury concentration and action time of LPS, as well as the optimal action concentration of ZJTP drug-containing serum. HUVECs were divided into a blank control group, a model group, a ZJTP drug-containing serum group, and an SCFA mixed liquid group. ELISA was used to detect the level of endothelin-1 (ET-1), nitric oxide (NO), interleukin-1β (IL-1β), interleukin-6 (IL-6), and TNF-α. Western blot was performed to detect the protein expression of G protein-coupled receptor43 (GPR43), β-suppressor protein-2 (β-arrestin-2), nuclear factor-κB suppressor α (IκBα), and nuclear factor κB p65 (NF-κB p65). The nucleation of NF-κB p65 was observed by immunofluorescence staining (IF). The role of GPR43 in the regulation of inflammatory injury was observed by means of small interfering ribonucleic acid (siRNA). The cells after intervention were divided into an empty carrier group, a ZJTP drug-containing serum group, a Si-GPR43 group, and a Si-GPR43 + ZJTP drug-containing serum group. The content of IL-1β, IL-6, and TNF-α was detected by ELISA. The protein expression of pathways was detected by Western blot. IF was used to observe the nucleation of NF-κB p65. ResultThe optimal molding condition was 1 mg·L-1 LPS for 24 h. The optimal drug intervention condition was 5% ZJTP drug-containing serum for 24 h. Compared with the blank control group, the content of ET-1 in the model group was significantly increased, and the content of NO was significantly decreased (P<0.01). The levels of inflammatory factors were significantly increased (P<0.01). The expressions of GPR43 and IκBα were significantly decreased, while the protein expressions of β-arrestin-2 and NF-κB p65 were significantly increased (P<0.01). NF-κB p65 protein was transferred from the extranuclear to the intranuclear (P<0.01). Compared with the model group, the content of ET-1 in the ZJTP drug-containing serum group was decreased, and the content of NO was increased (P<0.05). The levels of inflammatory factors decreased (P<0.05). The protein expressions of GPR43 and IκBα were increased, while the expressions of β-arrestin-2 and NF-κB p65 were decreased (P<0.05). The amount of NF-κB p65 transferred from the intranuclear to the extranuclear decreased (P<0.01). The mechanism study showed that compared with the Si-GPR43 group, the content of IL-1β, IL-6, and TNF-α were significantly decreased after treatment with ZJTP drug-containing serum (P<0.01). The protein expressions of GPR43 and IκBα were significantly increased (P<0.01), while the protein expressions of β-arrestin-2 and NF-κB p65 were significantly decreased (P<0.01). The amount of NF-κB p65 transferred from the extranuclear to the intranuclear decreased (P<0.01). ConclusionZJTP has a protective effect on HUVECs with high glucose and LPS-induced inflammatory injury, which may be related to the regulation of GPR43/β-arrestin-2/IκBα/NF-κB pathway.

2.
Arq. gastroenterol ; 60(4): 536-542, Oct.-Nov. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1527862

ABSTRACT

ABSTRACT Background: Bile acids (BAs) are steroid molecules synthesized exclusively in the liver, being end products of cholesterol catabolism. BAs are known to be involved in several metabolic alterations, including metabolic syndrome and type 2 diabetes mellitus (DM2). DM2 is a chronic degenerative disease characterized by insulin resistance, insulin deficiency due to insufficient production of pancreatic ß-cells, and elevated serum glucose levels leading to multiple complications. Objective: The objective of this study is to investigate the role of BAs in the pathophysiology of DM2, highlighting the possibilities in the development of therapeutic procedures targeting BAs as an optional pathway in the treatment of DM2. Methods: The research was carried out through narrative review and publications on the relationship between BAs and DM2. The databases used for the search include PubMed, Scopus, and Web of Science. The keywords used for the search include bile acids, type 2 diabetes mellitus, metabolic syndrome, and metabolic disorders. Results: The studies have reported the involvement of BAs in the pathophysiology of DM2. BAs act as a ligand for the nuclear farnesoid X receptor, regulating glucose metabolism, lipid metabolism, and cellular energy production. Additionally, BAs modulate the production, elimination, and mobilization of BAs through the farnesoid X receptor. BAs also act as a signaling pathway through Takeda G protein-coupled receptor 5, further contributing to metabolic regulation. These findings suggest that targeting BAs may offer a novel therapeutic approach in the treatment of DM2. Conclusion: This study highlights the important role of BAs in DM2, specifically through their interactions with key metabolic pathways. Targeting BAs may represent an innovative and effective approach to the treatment of DM2.


RESUMO Contexto: Os ácidos biliares (ABs) são moléculas esteróides sintetizadas exclusivamente no fígado, sendo produtos finais do catabolismo do colesterol. Os ABs são conhecidos por estarem envolvidos em várias alterações metabólicas, incluindo a síndrome metabólica e o diabetes mellitus tipo 2 (DM2). A DM2 é uma doença crônica degenerativa caracterizada pela resistência insulínica, deficiência de insulina devido à produção insuficiente de células ß pancreáticas e hiperglicemia levando a múltiplas complicações. Objetivo: O objetivo deste estudo é investigar o papel dos ABs na fisiopatologia da DM2, destacando as possibilidades no desenvolvimento de procedimentos terapêuticos visando os ABs como uma via opcional no tratamento da DM2. Métodos: A pesquisa foi realizada por meio de revisão narrativa e publicações sobre a relação entre ABs e DM2. As bases de dados usadas para a pesquisa incluem PubMed, Scopus e Web of Science. As palavras-chave usadas para a pesquisa incluíram: ácidos biliares, diabetes mellitus tipo 2, síndrome metabólica e distúrbios metabólicos. Resultados: Os estudos relataram o envolvimento dos ABs na fisiopatologia da DM2. Os ABs atuam como ligantes para o receptor nuclear farnesoide X, regulando o metabolismo da glicose, metabolismo lipídico e produção de energia celular. Além disso, os ABs regulam a produção, eliminação e mobilização de ABs através do receptor farnesoide X. Os ABs também atuam como uma via de sinalização através do receptor acoplado à proteína G Takeda 5, contribuindo ainda mais para a regulação metabólica. Esses achados sugerem que o ABs pode oferecer uma nova abordagem terapêutica no tratamento da DM2. Conclusão: Este estudo destaca o papel importante do ABs na DM2, especificamente por meio de suas interações com vias metabólicas-chave. O redirecionamento ao ABs pode representar uma abordagem inovadora e eficaz para o tratamento da DM2.

3.
China Pharmacy ; (12): 2995-2999, 2023.
Article in Chinese | WPRIM | ID: wpr-1003535

ABSTRACT

OBJECTIVE To study the effects and potential mechanism of anaphylactoid reaction induced by nonapeptide IVQKIKHCF activating mast cells. METHODS Using human mast cell line LAD2 as subject, and substance P as positive control, the activation effects of 25, 50 and 100 μmol/L IVQKIKHCF on mast cells were investigated by determining the release rate of β-aminohexosidase, histamine release, and the contents of inflammatory factors; using MrgprX2-knockdown LAD2 cells and Mas- related G protein-coupled receptor X2 (MRGPRX2) high-expression human embryonic kidney cell line HEK293 (MRGPRX2/ HEK293 cells) as subject, the correlation between the activation effect of IVQKIKHCF and MRGPRX2 was investigated by determining the release rate of β-aminohexosidase, and intracellular calcium ion concentration. RESULTS IVQKIKHCF with 25, 50, 100 μmol/L could significantly increase the release rate of β-aminohexosidase and histamine release in LAD2 cells (P<0.05), and promote the release of tumor necrosis factor-α, interleukin-8, macrophage inflammatory protein-1β and monocyte chemotactic protein-1 to varying degrees (P<0.05). After knocking down MrgprX2, the effects of 25, 50, 100 μmol/L IVQKIKHCF promoting the release of β-aminohexosidase in LAD2 cells were reversed significantly (P<0.05), resulting in an increase of calcium ion concentration in MRGPRX2/HEK293 cells. CONCLUSIONS Nonapeptide IVQKIKHCF can promote mast cells to release granular matter and inflammatory mediators by activating MRGPRX2 thus inducing anaphylactoid reaction.

4.
Acta Pharmaceutica Sinica ; (12): 2139-2145, 2023.
Article in Chinese | WPRIM | ID: wpr-999130

ABSTRACT

G protein-coupled receptors (GPCRs) represent the largest family of membrane proteins and are the target of approximately half of all therapeutic drugs. There are ~300 orphan GPCRs, which have great potential in drug development. G protein-coupled receptor 35 (GPR35), a rhodopsin-like orphan GPCR, is widely involved in immune regulation, gastrointestinal disorders, cardiovascular diseases, cancer, as well as other diseases, suggesting its great potential as a therapeutic target in a variety of diseases. However, the current research on GPR35 is insufficient, including the true endogenous ligand has not been confirmed, the molecular mechanism of its role in disease is not fully understood, and there is a lack of effective intervention strategies targeting GPR35. This article summarizes the deorphatization of GPR35, GPR35-related signaling pathways and their association with various diseases, in order to provide a reference for in-depth study of GPR35 in diseases and development of drugs targeting GPR35.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 86-93, 2023.
Article in Chinese | WPRIM | ID: wpr-996508

ABSTRACT

ObjectiveTo explore the potential mechanism of Zuogui Jiangtang Tongmai prescription (ZJT) in the treatment of diabetes mellitus complicated with cerebral infarction (DM-CI) in rats based on the short-chain fatty acids (SCFAs)/G protein-coupled receptor 43 (GPR43)/glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) signaling pathway. MethodSixty SD rats were randomly divided into sham operation group, model group, low- and high-dose ZJT groups (12, 24 g·kg-1), western medicine group (140 mg·kg-1 pioglitazone metformin tablets + 27 mg·kg-1 enteric-coated aspirin tablets). Except for the sham operation group, all other groups were fed a high-sugar high-fat diet for 4 weeks and then subjected to intraperitoneal injection of 1% streptozotocin at 35 mg·kg-1 combined with middle cerebral artery occlusion (MCAO) to establish a DM-CI rat model. The corresponding interventions were performed with distilled water, low-dose ZJT, high-dose ZJT, pioglitazone metformin tablets, and enteric-coated aspirin tablets. After surgery, National Institutes of Health Stroke Scale (NIHSS) scoring and triphenyltetrazolium chloride (TTC) staining to measure the rat's cerebral infarct volume were carried out. Random blood glucose levels were measured, and hematoxylin-eosin (HE) staining was used to observe histopathological changes in rat brain tissues. Gas chromatography was employed to detect the content of SCFAs in the cecum contents. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure serum GLP-1 level. Western blot was used to detect the protein expression of GPR43 in rat ileal tissues and GLP-1R in the ischemic brain tissues. ResultCompared with the sham operation group, the model group showed significantly increased NIHSS scores, random blood glucose levels, and cerebral infarct volumes (P<0.01), and significantly decreased SCFAs content, GLP-1 levels, and GPR43 and GLP-1R protein expression (P<0.01). Compared with the model group, the high-dose ZJT group and the western medicine group exhibited significantly reduced NIHSS scores, random blood glucose levels, and cerebral infarct volumes (P<0.05, P<0.01), and significantly increased SCFAs content, GLP-1 levels, and GPR43 and GLP-1R protein expression (P<0.01). ConclusionZJT can improve glucose metabolism disorder and reduce neurological damage in DM-CI rats, and its mechanism may be related to the increase in SCFAs content and the upregulation of the GPR43/GLP-1/GLP-1R signaling pathway.

6.
Acta Pharmaceutica Sinica ; (12): 1267-1274, 2023.
Article in Chinese | WPRIM | ID: wpr-978705

ABSTRACT

Using beta-2 adrenergic receptor, 5-hydroxytryptamine and angiotensin II type 1 receptor as control, we here established a method for rapid prediction of the initial position amino acids of N-terminal, C-terminal, intracellular loops, extracellular loops and transmembrane (TM) regions in G protein-coupled receptors (GPCRs), and successfully predicted the structure of Mas-related G protein-coupled receptors X3 (MRGPRX3). To achieve this purpose, nanoluciferase (Nluc) was inserted into the different sites of these GPCRs′ sequence by sequence and ligation-independent cloning (SLIC) method, and the luminescence value were measured to distinguish the different parts of GPCRs. The results showed that luminescence values of NLuc luciferase at TM region were less than 100 000, and the values were higher than 1 000 000 at N terminal, C terminal, or extracellular loops and intracellular loops, and the values were between 100 000 and 500 000 at junction. The predicted MRGPRX3 structure was analyzed in detail and was compared with AlphaFold predicted structure. In conclusion, this method could provide useful information of GPCR structure model for the ligand virtual screening, and could provide certain experimental basis for structural pharmacology.

7.
Acta Pharmaceutica Sinica B ; (6): 1128-1144, 2023.
Article in English | WPRIM | ID: wpr-971745

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Fat accumulation "sensitizes" the liver to insult and leads to nonalcoholic steatohepatitis (NASH). G protein-coupled receptor 35 (GPR35) is involved in metabolic stresses, but its role in NAFLD is unknown. We report that hepatocyte GPR35 mitigates NASH by regulating hepatic cholesterol homeostasis. Specifically, we found that GPR35 overexpression in hepatocytes protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of GPR35 had the opposite effect. Administration of the GPR35 agonist kynurenic acid (Kyna) suppressed HFCF diet-induced steatohepatitis in mice. Kyna/GPR35 induced expression of StAR-related lipid transfer protein 4 (STARD4) through the ERK1/2 signaling pathway, ultimately resulting in hepatic cholesterol esterification and bile acid synthesis (BAS). The overexpression of STARD4 increased the expression of the BAS rate-limiting enzymes cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and CYP8B1, promoting the conversion of cholesterol to bile acid. The protective effect induced by GPR35 overexpression in hepatocytes disappeared in hepatocyte STARD4-knockdown mice. STARD4 overexpression in hepatocytes reversed the aggravation of HFCF diet-induced steatohepatitis caused by the loss of GPR35 expression in hepatocytes in mice. Our findings indicate that the GPR35-STARD4 axis is a promising therapeutic target for NAFLD.

8.
Acta Pharmaceutica Sinica B ; (6): 694-708, 2023.
Article in English | WPRIM | ID: wpr-971740

ABSTRACT

Stroma surrounding the tumor cells plays crucial roles for tumor progression. However, little is known about the factors that maintain the symbiosis between stroma and tumor cells. In this study, we found that the transcriptional regulator-signal transducer and activator of transcription 3 (Stat3) was frequently activated in cancer-associated fibroblasts (CAFs), which was a potent facilitator of tumor malignancy, and formed forward feedback loop with platelet-activating factor receptor (PAFR) both in CAFs and tumor cells. Importantly, PAFR/Stat3 axis connected intercellular signaling crosstalk between CAFs and cancer cells and drove mutual transcriptional programming of these two types of cells. Two central Stat3-related cytokine signaling molecules-interleukin 6 (IL-6) and IL-11 played the critical role in the process of PAFR/Stat3 axis-mediated communication between tumor and CAFs. Pharmacological inhibition of PAFR and Stat3 activities effectively reduced tumor progression using CAFs/tumor co-culture xenograft model. Our study reveals that PAFR/Stat3 axis enhances the interaction between tumor and its associated stroma and suggests that targeting this axis can be an effective therapeutic strategy against tumor malignancy.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 25-32, 2023.
Article in Chinese | WPRIM | ID: wpr-953920

ABSTRACT

ObjectiveTo discuss the effect of modified Gegen Qinliantang (MGQT) on blood glucose and lipids and Takeda G protein-coupled receptor 5 (TGR5)-related pathways in pancreatic tissue of obese type 2 diabetes mellitus (T2DM) mice. MethodA total of 10 male specific pathogen free (SPF) m/m mice (7 weeks old) and 50 male SPF (7 weeks old) were adaptively fed for one week in SPF laboratory. The m/m mice were included in the blank group. T2DM was induce d in the 50 db/db mice. The model mice were randomized into the model group, metformin group (0.2 g·kg-1), high-dose, medium-dose, and low-dose (31.9, 19.1, 6.4 g·kg-1) MGQT groups, with 10 in each group, and the drug dose was10 mL·kg-1. The model group and the blank group received distilled water of the same volume. The administration lasted 12 weeks (once/day). Fasting blood glucose (FBG) was detected regularly. After 12 weeks of administration, serum levels of glycated serum protein (GSP), serum glucose (GLU), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were detected. Pathological changes in the pancreatic tissue were based on hematoxylin-eosin (HE) staining. Western blot was used to determine the protein expression of TGR5, protein kinase A (PKA), phosphorylated (p)-PKA, cyclic-AMP response element binding protein (CREB), p-CREB, proprotein convertase 1/3 (PC1/3), and glucagon-like peptide-1 (GLP-1) in pancreatic tissues. The level of cyclic adenosine monophosphate (cAMP) in pancreatic tissue was determined by enzyme-linked immunosorbent assay (ELISA). ResultCompared with the blank group, the model group had pathological changes in pancreatic tissue, high levels of FBG, GSP, GLU, TC, TG, and LDL-C (P<0.01), low level of HDL-C (P<0.05), low protein expression of TGR5, p-PKA (Thr197)/PKA, p-CREB (Ser133)/CREB, PC1/3, and GLP-1 in pancreatic tissue (P<0.01), and low content of cAMP in the pancreas (P<0.01). Pancreatic tissue lesion in the treatment groups were milder than that in the model group. Both the high-dose MGQT and metformin can reduce the levels of FBG, GSP, GLU, TC, TG, and LDL-C in db/db mice (P<0.05, P<0.01) and increase the level of HDL-C (P<0.01). Except the GLP-1 protein in the medium-dose MGQT group, the protein expression of TGR5, p-PKA (Thr197)/PKA, p-CREB (Ser133)/CREB, PC1/3, and GLP-1 in the high-dose and medium-dose MGQT groups and the metformin group increased compared with that in the model group (P<0.05, P<0.01). The content of cAMP in the pancreatic tissue of the high-dose and medium-dose MGQT groups and the metformin group was raised compared with that in model group (P<0.05, P<0.01). ConclusionMGQT can improve the glucose homeostasis in db/db mice with T2DM by regulating TGR5/cAMP/GLP-1 signaling pathway-related protein expression.

10.
Acta Pharmaceutica Sinica ; (12): 679-687, 2023.
Article in Chinese | WPRIM | ID: wpr-965626

ABSTRACT

Parkinson's disease (PD) is a degenerative disease of the central nervous system due to the loss or death of dopaminergic neurons in the substantia nigra. Clinically, levodopa is the most effective and commonly used drug for PD treatment. However, long-term levodopa therapy is prone to motor complications and other side effects caused by excessive peripheral dopamine production, which has become an urgent problem to be solved in PD treatment. Dopamine receptor (DR) agonists are similar to dopamine. They can directly stimulate postsynaptic dopamine receptors, produce the same effect as dopamine, delay the application of levodopa as much as possible, and reduce complications caused by long-term use of levodopa. Therefore, screening effective dopamine receptor agonists has become a key issue in the study and treatment of PD. In order to establish a rapid, stable and reliable method for dopamine receptor agonist screening, this study used the human dopamine receptor 2 (DRD2) gene fused with a circular permuted EGFP (cpEGFP) to construct a recombinant gene, packaged with lentiviral vector, and the vector replaced the parted inner transmembrane domain of the third intracellular loop (ICL3) of genetically-encoded GPCR-activation based (GRAB) sensors. The fluorescence of GPCR-fused cpEGFP is regulated by conformational changes mediated by the interaction of dopamine receptor agonists with GPCRs without altering GPCR activity. The HEK293T cells were infected with viral vector, screened by puromycin to select highly expressed cells. Dopamine receptor agonists (including dopamine, bromocriptine mesylate, cabergoline, pramipexole) were used as positive drugs to explore the best screening and detection conditions, establishing a stable model to evaluate the dopamine receptor agonist. The results showed that the optimal filter for the dopamine receptor agonist in this study was the cell seeding count of 7×104, and the effective concentration of the positive drug was 1-100 µmol·L-1. In addition, pretreated with 10 µmol·L-1 dopamine receptor antagonists (including chlorprothixol hydrochloride, domperidone, and sulpiride), the positive fluorescence signal of overexpressed DRD2-cpEGFP HEK293T cells could not be detected when exposed to 10 µmol·L-1 dopamine receptor agonists, which proved that dopamine receptor antagonists could block the activity of dopamine receptor agonists, so they cannot activate dopamine receptor allosteric, indicating that the model has good specificity and can also be used for the screening and detection of new dopamine receptor antagonists. In summary, the study constructs a stable dopamine sensor detection system, which can effectively screen potential dopamine receptor agonists. The operation procedures are simple and rapid. And it can be used for a large-scale screening providing a fundamental methodology for drug development and PD treatment targeted on DRD2.

11.
Biol. Res ; 55: 5-5, 2022. graf, ilus
Article in English | LILACS | ID: biblio-1383910

ABSTRACT

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and down-regulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Subject(s)
Animals , Mice , Electroacupuncture , Microglia/physiology , G-Protein-Coupled Receptor Kinase 2/physiology , Pain Management , Pain/chemically induced , Inflammation/chemically induced , Inflammation/therapy , Neurons
12.
Journal of Clinical Hepatology ; (12): 2172-2176, 2022.
Article in Chinese | WPRIM | ID: wpr-942682

ABSTRACT

Non-viral liver diseases mainly include nonalcoholic fatty liver disease, alcoholic liver disease, autoimmune liver disease, and cholestatic liver disease, and the prevalence rate of non-viral liver diseases tends to increase in recent years. Takeda G protein-coupled receptor-5 (TGR5) belongs to the G protein-coupled receptor superfamily and is activated by primary and secondary bile acids. TGR5 plays an important regulatory role in bile acid homeostasis, basal metabolism, energy balance, and alleviation of inflammatory response and is a potential therapeutic target for many diseases. An increasing number of evidence has shown that TGR5 exerts a protective effect on the liver by improving bile acid and glycolipid metabolism in liver, alleviating liver inflammation, and reducing liver steatosis. This article reviews the recent advances in the basic research on TGR5 in the field of non-viral liver diseases, so as to facilitate the development of the research on TGR5.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 25-30, 2022.
Article in Chinese | WPRIM | ID: wpr-940548

ABSTRACT

ObjectiveTo explore the effects of Gegen Qinliantang(GGQL) on the proliferation and apoptosis of intestinal epithelial cells as well as on the expression of cyclic adenosine monophosphate (cAMP), G protein-coupled receptor 119 (GPR119), and glucagon-like peptide-1 (GLP-1), so as to explore its potential hypoglycemic mechanism. MethodTwenty-five Wistar rats were gavaged with GGQL at the dose of 23 g·kg-1 crude drug, twice a day, which meant that 6 mL was administered into each rat per day for preparing the GGQL-containing serum. After seven consecutive times of administration, the intestinal epithelial L (NCI-H716) cells were cultured with different concentrations (1%, 2.5%, 5%, 7.5%, and 10%) of GGQL. The cell proliferation was evaluated using cell counting kit-8 (CCK-8) and the apoptosis by flow cytometry. The GLP-1 and cAMP contents in cell supernatant were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein GLP-1 and GPR119 levels were assayed by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the control group, GGQL significantly reduced the proliferation of NCI-H716 cells(P<0.05). As the GGQL concentration increased, its inhibitory effect became more obvious. GGQL at each concentration significantly promoted the apoptosis of NCI-H716 cells (P<0.05). Compared with the control group, GGQL significantly up-regulated the expression of cAMP, GLP-1, and GPR119 (P<0.05). The results showed that the effect of GGQL was positively correlated with its concentration, and 10% GGQL exhibited the best effect. ConclusionGGQL effectively inhibits the proliferation of NCI-H716 cells and promotes their apoptosis, and it may promote the secretion of GLP-1 by up-regulating the expression of cAMP and GPR119.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 131-140, 2022.
Article in Chinese | WPRIM | ID: wpr-940297

ABSTRACT

ObjectiveTo explore the effects of different treatment methods of "soothing liver, invigorating spleen, soothing liver and invigorating spleen, soothing liver first and then soothing liver and invigorating spleen, as well as invigorating spleen first and then soothing liver and invigorating spleen" on liver depression combined with liver injury in rats and their action mechanisms. MethodA six-week rat model of liver depression combined with liver injury was established by restraint stress and subcutaneous injection of carbon tetrachloride (CCl4, 5.89 g·kg-1, once every three days). At the same time, the drugs were given by gavage. Forty-eight male SD rats of clean grade were randomly divided into eight groups, namely the normal group, model group, bicyclol (0.2 g·kg-1) group, Sinisan (4.32 g·kg-1) group, Liu Junzitang (9.26 g·kg-1) group, Chaishao Liu Junzitang A (Chai A, soothing liver and invigorating spleen,13.57 g·kg-1) group, Chaishao Liu Junzitang B (Chai B, soothing liver first and then soothing liver and invigorating spleen, 13.57 g·kg-1) group, and Chaishao Liu Junzitang C (Chai C, invigorating spleen first and then soothing liver and invigorating spleen, 13.57 g·kg-1) group, with six rats in each group. The pathological changes in liver and colon tissues of each group were observed under light microscope and electron microscope. The serum biochemical indexes of the liver were detected using an automatic biochemical analyzer. The relative mRNA expression levels of Takeda G protein-coupled receptor 5 (TGR5) and intestinal mucosal zona occluden-1 (ZO-1), Occludin, and Claudin-1 in the liver and colon were detected by reverse-transcription polymerase chain reaction (RT-PCR). The positive expression rate of proliferating cell nuclear antigen (PCNA) in the colon was detected by immunohistochemistry. ResultCompared with normal group, the model group exhibited significantly elevated serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL) (P<0.01), lowered TGR5 mRNA expression in liver tissue, up-regulated TGR5 mRNA expression in the colon tissue (P<0.05,P<0.01), and down-regulated ZO-1, Occludin, and tight junction protein-1 (Claudin-1) mRNA expression and PCNA in the colon tissue (P<0.01). Compared with the model group, bicyclol and Chai C remarkably decreased the levels of serum ALP, ALT, AST, TBIL, and DBIL (P<0.05,P<0.01), while Liu Junzitang, Chai A, Chai B, and Chai C significantly up-regulated the TGR5 mRNA expression in the liver and down-regulated its expression in the colon (P<0.01). Bicyclol, Chai A, Chai B, and Chai C enhanced the ZO-1 and Claudin-1 mRNA expression in the colon (P<0.05,P<0.01). Bicyclol, Sinisan, and Chai C increased PCNA expression (P<0.01). The comparison with the Chai C group showed that the TGR5 mRNA expression in the liver and ZO-1 mRNA expression in the colon of the bicyclol and Sinisan groups were lower, whereas the TGR5 mRNA expression in the colon was higher (P<0.01). However, the PCNA expression in the colon of the Liu Junzitang and Chai B groups declined significantly (P<0.05). ConclusionIn the presence of liver injury, invigorating spleen first helps to relieve the liver injury, and the efficacy of "spleen-invigorating" therapy in increasing the intestinal mucosal tight junction proteins and improving the gastrointestinal function is related to its activation of TGR5 to improve the intestinal mucosal barrier function, promote the renewal of intestinal stem cells, and drive the regeneration after injury.

15.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 421-431, 2022.
Article in English | WPRIM | ID: wpr-939908

ABSTRACT

Pseudo-allergic reactions (PARs) widely occur upon application of drugs or functional foods. Anti-pseudo-allergic ingredients from natural products have attracted much attention. This study aimed to investigate anti-pseudo-allergic compounds in licorice. The anti-pseudo-allergic effect of licorice extract was evaluated in rat basophilic leukemia 2H3 (RBL-2H3) cells. Anti-pseudo-allergic compounds were screened by using RBL-2H3 cell extraction and the effects of target components were verified further in RBL-2H3 cells, mouse peritoneal mast cells (MPMCs) and mice. Molecular docking and human MRGPRX2-expressing HEK293T cells (MRGPRX2-HEK293T cells) extraction were performed to determine the potential ligands of MAS-related G protein-coupled receptor-X2 (MRGPRX2), a pivotal target for PARs. Glycyrrhizic acid (GA) and licorice chalcone A (LA) were screened and shown to inhibit Compound48/80-induced degranulation and calcium influx in RBL-2H3 cells. GA and LA also inhibited degranulation in MPMCs and increase of histamine and TNF-α in mice. LA could bind to MRGPRX2, as determined by molecular docking and MRGPRX2-HEK293T cell extraction. Our study provides a strong rationale for using GA and LA as novel treatment options for PARs. LA is a potential ligand of MRGPRX2.


Subject(s)
Animals , Humans , Mice , Rats , Anti-Allergic Agents/therapeutic use , Calcium/metabolism , Cell Degranulation , Glycyrrhiza , HEK293 Cells , Hypersensitivity/drug therapy , Mast Cells/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/therapeutic use
16.
Chinese Journal of Dermatology ; (12): 900-902, 2022.
Article in Chinese | WPRIM | ID: wpr-957755

ABSTRACT

A 44-year-old male patient presented with a subcutaneous nodule in the left little finger for 3 years. Skin examination showed a subcutaneous nodule with rubber-like hardness but no tenderness on palpation, measuring 0.4 cm × 0.4 cm in size at the dorsal distal aspect of the left little finger, and the movement of the distal interphalangeal joint was unrestricted. Postoperative histopathological examination revealed that the tumor contained abundant stroma consisting of variable fiberous, chondroid and myxoid materials; tumor cells were oval to short spindle-shaped with inconspicuous nucleoli but no mitosis; cells were arranged haphazardly or in small clusters. Immunohistochemical study showed positive staining for vimentin, CD34 and transcription factors ERG and SOX9, but negative staining for S100, P63, broad-spectrum cytokeratin AE1/AE3, epithelial membrane antigen, smooth muscle actin and desmin in tumor cells, and the Ki67 labeling index was below 1%. Finally, the patient was diagnosed with acral fibrochondromyxoid tumor.

17.
Acta Pharmaceutica Sinica B ; (6): 1835-1852, 2021.
Article in English | WPRIM | ID: wpr-888837

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease and is mainly characterized by abnormal proliferation of fibroblast-like synoviocytes (FLS). The up-regulated cellular membrane expression of G protein coupled receptor kinase 2 (GRK2) of FLS plays a critical role in RA progression, the increase of GRK2 translocation activity promotes dysfunctional prostaglandin E4 receptor (EP4) signaling and FLS abnormal proliferation. Recently, although our group found that paeoniflorin-6'-

18.
Chinese Journal of Pharmacology and Toxicology ; (6): 777-777, 2021.
Article in Chinese | WPRIM | ID: wpr-909615

ABSTRACT

OBJECTIVE Aryl hydrocarbon receptor (Ahr) is thought to be a crucial factor that regulates immune responses, which may be involved in the pathogenesis of autoimmune inflammation including rheumatoid arthritis (RA). The results of our group in recent years have shown that CP-25, a novel ester derivative of paeoniflorin, has a good effect on improving RA animal models. However, whether the anti-arthritis effect of CP-25 is related to Ahr remains unclear. METHODS CP-25 treatment ameliorated adjuvant-induced arthritis (AA), a mouse model of RA, by inhibiting Ahr-related activities in fibroblasts like synoviocytes (FLS). AA rats were treated with CP-25 or paroxetine from day 17 to 33 after immunization. RESULTS CP-25 alleviated arthritis symptoms and the pathological changes, decreased the expression of Ahr in the synovium and FLS of AA rats. Besides, treatment with CP-25 reduced the proliferation and migration of MH7A caused by Ahr activation. In addition, we also demonstrated that CP-25 down-regulated the co-expres?sion and co-localization of Ahr and G protein-coupled receptor kinase 2 (GRK2) in MH7A. CONCLUSION The data pre?sented here demonstrated that CP-25 suppressed FLS dysfunction in rats with AA, which were associated with reduced Ahr activation and the interaction between Ahr and GRK2.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 39-46, 2021.
Article in Chinese | WPRIM | ID: wpr-906235

ABSTRACT

Objective:To study the effect and related mechanism of Fuyou granule on danazol-induced precocious puberty model in rats. Method:Totally 21 cages of SD female rats were randomly divided into normal group, model group, Leuprorelin(0.1 g·kg<sup>-1</sup>) and Fuyou mixture group(37.9 g·kg<sup>-1</sup>), and high-dose, mid-dose and low dose Fuyou granule<italic> </italic>groups(17.0,8.5,4.3 g·kg<sup>-1</sup>). Rats at 5 days of age were given a single subcutaneous injection of 300 μg danazol to establish the precocious puberty model. After 10 days of modeling, drug intervention was started. Vaginal opening was examined at the age of 20 days, and the gonadal development was observed by hematoxylin-eosin (HE) staining. The levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol (E<sub>2</sub>) were determined by radioimmunoassay. The mRNA expressions of hypothalamic gonadotropin releasing hormone (GnRH), Kiss-1, G protein-coupled receptor 54 (GPR54) were detected by Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and the expression of GnRH cells in the hypothalamus was detected by immunohistochemistry. Result:Compared with the normal group, the vaginal opening of the model group was significantly earlier, and the uterus and ovarian coefficients were significantly increased (<italic>P</italic><0.05), indicating that the danazol-induced precocious puberty model was successfully established. The expression levels of GnRH, Kiss-1, and GPR54 also increased significantly (<italic>P</italic><0.05), indicating that the danazol model can activate the HPG axis in advance, thereby inducing precocious puberty<bold>. </bold>Compared with the model group, the mid-dose Fuyou granule group significantly delayed the time of vaginal opening (<italic>P</italic><0.01), high-dose Fuyou granule group<italic> </italic>significantly reduced uterine wall thickness and uterine coefficient (<italic>P</italic><0.05,<italic>P</italic><0.01), mid-dose group reduced ovarian coefficient and uterine wall thickness (<italic>P</italic><0.05). All the three dosage groups of Fuyou granule significantly reduced the content of serum hormones E<sub>2</sub>, LH and FSH (<italic>P</italic><0.05,<italic>P</italic><0.01), reduced the expression levels of hypothalamic GnRH, Kiss-1 and GPR54 mRNA (<italic>P</italic><0.05), and decreased the expression of GnRH cells (<italic>P</italic><0.05). Conclusion:Fuyou granule can achieve therapeutic precocity by regulating the Kiss-1/GPR54 system and down-regulating the expression of GnRH to inhibit the activation of the HPG axis.

20.
Acta Pharmaceutica Sinica ; (12): 679-688, 2021.
Article in Chinese | WPRIM | ID: wpr-876508

ABSTRACT

Neuropathic pain (NP) is a medical problem that has been bothering human beings and seriously affects people's quality of life. Although great progress has been made in the study of NP in recent years, there are still many patients who are ineffective to the existing treatments. At present, drug therapy is still the main method to relieve pain, however, adverse drug reactions has hindered the curative effects of drugs. It is extremely urgent to find new drug targets and reduce the adverse effects of existing drugs. This review will mainly describe the current situation and pathogenesis of neuropathic pain, effectiveness and limitations of existing drugs for treating neuropathic pain, and the current status of drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL